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Abstract: Taking a complete Heyting algebra L and using L-sets, we will build
the L-subrings of valuation and L-valuations of an algebraic function field of one
variable F/K, as a generalization of the valuation rings and discrete valuations
of F/K, and we will obtain many properties of them, and their analogues to the
Theorem of Approximation of an amount finite of non-equivalent valuations.
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1. Introduction
The concept of fuzzy set was introduced in the year of 1965 by Lotfi Asker

Zadeh in his paper entitled “Fuzzy Sets” (see [7]), in which he offers, in a certain
direction, generalizations of some basic concepts of the set algebra. Three years
later, C. L. Chang applied the concept of fuzzy set to realize many generalizations
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for the concepts of general topology (see [2]). Since then, several people have
applied the concept of fuzzy set, or some concept of set more general, in various
branches of mathematics and physics to obtain generalizations in this sense. We
note that the fuzzy sets are defined using the interval [0, 1] but, in this work, we will
use an L complete Heyting algebra to apply the L-sets (see [3]). With them, we will
obtain generalizations of the valuation rings (Definition 2.1) and discrete valuations
(Definition 4.1) of algebraic function field of one variable over a field, and we will
obtain the counterpart theorems for L-valuations corresponding to the Theorem
of Approximation of an amount finite non-equivalent valuations (Theorem 3.1 and
Theorem 4.2).

So, we will fix the notation, considering in the first instance the one established
in [4]. Let K be a field fixed. An algebraic function field of one variable over K
is a field extension F/K such that there exist x ∈ F transcendental over K where
the extension F/K(x) is finite. For simplicity, we will say that F/K is a function
field. We will denote by K̃ to the set of the elements z ∈ F which are algebraic
over K; it is a subfield of F containing K and is called the field of constants of
F/K. A valuation ring O of F/K is a subring of F so that K ⫋ O ⫋ F and, for
each element z ∈ F nonzero, it is true that z ∈ O or z−1 ∈ O. For a valuation ring
O of F/K is has that O is a local ring with a unique maximal ideal P = O \ O∗

where O∗ is the multiplicative group of the units of the valuation ring O, K̃ ⊆ O
and K̃ ∩ P = {0}. Furthermore, O is a principal ideal domain and if t ∈ O such
that P = tO, then each element z ∈ F non zero is uniquely expressed of the form
z = utn for some u ∈ O∗ and n ∈ Z; such element t ∈ O is called prime element or
uniformizing element for P . In these conditions, OP := O is called the valuation
ring of the place P .

Now, as in [3], let L be a order partially ordered set. We say that L is a
complete Heyting algebra if L is a complete lattice such that for all A ⊆ L and for
each a ∈ L, sup{a ∧ c | c ∈ A} = a ∧ supA and inf{a ∨ c | c ∈ A} = a ∨ inf A.
We will always assume that L is a complete Heyting algebra consisting of at least
three elements, where we write 1 and 0 for the maximal and minimal elements of
L, and we will simply say that L is a lattice as abbreviation. We say that L is
regular if for each a, b ∈ L nonzero, a ∧ b ̸= 0. If X is a nonempty set, an L-subset
of X is any function from X into L. In particular, when L = [0, 1], the L-subsets
of X are called fuzzy subsets. If µ : X −→ L is an L-subset of X, the image of
µ is the subset µ(X) := {µ(x) | x ∈ X} of L and the support of µ is the subset
µ∗ := {x ∈ X | µ(x) > 0} of X. For all a ∈ L, the subset µa := {x ∈ X | µ(x) ≥ a}
of X is called the a-cut or a-level set of µ. We say that µ is normal or unitary
L-subset if 1 ∈ µ(X). If ν is other L-subset of X, then we say that µ is contained
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in ν or ν contains µ, and we write µ ⊆ ν or ν ⊇ µ, if µ(x) ≤ ν(x) for all x ∈ X.
On the other hand, if R is a commutative ring and µ is an L-subset of R, we say
that µ is an L-subring of R if µ(x − y) ≥ µ(x) ∧ µ(y) and µ(xy) ≥ µ(x) ∧ µ(y)
for all x, y ∈ R; if in addition, µ satisfies the relation µ(xy) ≥ µ(x) ∨ µ(y) for all
x, y ∈ R, we say µ is an L-ideal of R and µ∗ := {x ∈ R | µ(x) = µ(0)}.
L-subrings of valuations of function fields

Definition 2.1. Let F/K be a function field. An L-subring ν of F is said to be
L-subring of valuation of F if there exists a ∈ L \ {0, 1} so that

(i) for each z ∈ F , a and ν(z) are comparable;

(ii) for all c ∈ K \ {0}, ν(c) = a;

(iii) there exists an element z in F \ {0} such that ν(z) > a;

(iv) for each z ∈ F \ {0}, ν(z) > a if and only if ν(z−1) < a.

The element a ∈ L\{0, 1} of the Definition 2.1, is referred as the divisor element
of ν.

Proposition 2.1. Let ν be an L-subring of valuation of a function field F/K.
Then,

(i) ν(0) > a;

(ii) K ⊊ νa ⊊ F ;

(iii) for each z ∈ F \ {0}, ν(z) ≥ a or ν(z−1) ≥ a;

(iv) νa is a valuation subring of F ;

(v) K̃ ⊆ νa. Moreover, for each z ∈ K̃ with z ̸= 0, ν(z) = a .

(vi) Let u ∈ F \ {0}. Then, ν(u) = a if and only if u is a unity of νa;

(vii) if z and w are elements of F such that ν(z) > a and ν(w) ≥ a, then ν(zw) >
a. In particular, if ν(z) > a and ν(w) = a, then ν(zw) > a.

(viii) Let t ∈ F be a prime element of the place associated to the valuation ring νa
of F . Then, ν(tn) ≥ ν(t) > a for all n positive integer, and ν(z) = ν(t−1) for
each z ∈ F \ {0} so that ν(z) < a, that is, if z = utn with u a unit of νa and
n a negative integer, then ν(z) = ν(t−1).
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(ix) If u is a unit of νa and z ∈ F \ {0} such that ν(z) < a, then ν(uz) =
ν(u) ∧ ν(z) = ν(z);

(x) if there exists w ∈ F such that ν(w) = 0, then ν∗ = νa.

Proof. (i): Let z ∈ F \ {0} be so that ν(z) > a. Then, ν(0) ≥ ν(z) > a.
(ii): By definition of ν, it follows immediately that K ⊊ νa ⊊ F .
(iii): Let z ∈ F \ {0} be such that ν(z) < a, then ν(z−1) > a. Hence, ν(z) ≥ a or
ν(z−1) ≥ a, for all z ∈ F \ {0}.
(iv): Since νa is a subring of F , the statement follows from (ii) and (iii).
(v) The proof will be by contradiction. We assume that there exists z ∈ K̃ such
that ν(z) < a, or equivalently ν(z−1) > a, since ν is a valuation. So, we have
that z−1 is algebraic over K, with z−1 /∈ K. Let c1, . . . , cn ∈ K be such that
cn(z

−1)n+· · ·+c1z−1+1 = 0. Then, z−1(cn(z
−1)n−1+· · ·+c1) = −1, or equivalently,

z = −(cn(z
−1)n−1 + · · ·+ c1). Then

ν(z) = ν(−(cn(z
−1)n−1 + · · ·+ c1)) = ν(cn(z

−1)n−1 + · · ·+ c1)

≥ ν(cn(z
−1)n−1) ∧ · · · ∧ ν(c2z−1) ∧ ν(c1)

≥ (ν(cn) ∧ ν(z−1)n−1) ∧ · · · ∧ (ν(c2) ∧ ν(z−1)) ∧ ν(c1)
≥ (a ∧ ν(z−1)n−1)) ∧ · · · ∧ (a ∧ ν(z−1)) ∧ a
≥ a

> ν(z),

by this is absurd. Hence, ν(z) ≥ a.
On the other hand, if z ∈ K̃, with z ̸= 0, we have that ν(z) ≥ a. But, if ν(z) > a,
it would have to ν(z−1) < a, which is absurd, since ν(z−1) ≥ a, with z−1 ∈ K.
Therefore, ν(z) = a.
(vi): We assume ν(u) = a. If u would not be unity of νa, we will have that u

−1 /∈ νa,
that is ν(u−1) < a, with which ν(u) > a, but this is absurd. Then, u is a unity of
νa. Reciprocally, if u is a unity of νa, we will have that ν(u) ≥ a and ν(u−1) ≥ a.
If ν(u) > a, then ν(u−1) < a, contradiction. So that, necessarily ν(u) = a.
(vii): Since ν(zw) ≥ a, we have that if ν(zw) = a, then zw would be unity of νa,
that is, there exists u ∈ νa so that z(wu) = 1 where wu ∈ νa. This would imply
that z would be a unity of νa and ν(z) = a, which is a contradiction. Therefore,
ν(zw) > a.
(viii): In accordance with (iv), it is clear that ν(t) > a, for which ν(t−1) < a. If
z ∈ F \ {0} satisfies that ν(z) < a, then z /∈ νa, with which z = ut−n for some
unity u of νa and n ∈ N. Then, as ν(t−n) < a, we have

ν(z) = ν(ut−n) ≥ ν(u) ∧ ν(t−n) = a ∧ ν(t−n) = ν(t−n) = ν((t−1)n) ≥ ν(t−1),
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that is ν(z) ≥ ν(t−1). On the other hand,

ν(t−1) = ν(uu−1tn−1t−(n−1)t−1) ≥ ν(u−1) ∧ ν(tn−1) ∧ ν(ut−n) ≥ a ∧ ν(z) = ν(z),

that is ν(t−1) ≥ ν(z). Therefore, ν(z) = ν(t−1).
(ix): It holds immediately because of (viii).
(x): If ν(w) = 0 for some w ∈ F then, necessarily, w ̸= 0 and ν(w) = ν(t−1) = 0.
Then, for each z ∈ F such that ν(z) > 0, it must have to ν(z) ≥ a, that is, z ∈ νa.
Therefore, ν∗ = νa.

Proposition 2.2. Let ν be an L-subring of valuation of a function field F/K, with
a its divisor element. Assume that ν has the property that, for all x ∈ F nonzero,
the relation ν(x) = a implies that ν(xy) ≥ ν(y) for all y ∈ F . Then, for all x ∈ F
nonzero, ν(x) = a if and only if ν(xy) = ν(y) for all y ∈ F .
Proof. Let x ∈ F be arbitrary. We assume that ν(x) = a and let y ∈ F .
We have that ν(x) ≥ ν(xy). On the other hand, as ν(x−1) = a, it holds that
ν(y) = ν(x−1(xy)) ≥ ν(xy). Hence, ν(xy) = ν(y). Reciprocally, we assume that
ν(xy) = ν(y) for all y ∈ F . If ν(x) > a, then a = ν(1) = ν(1 ·x) = ν(x) > a, which
is absurd. Similarly, it must not happen that ν(x) < a. Therefore, ν(x) = a.
Let +∞ be an object such that +∞ /∈ Z, +∞ > n and (+∞)+n = n+(+∞) = +∞
for all n ∈ Z.

Theorem 2.1. Let F/K a function field, P a place of F and υP the valuation
associated with P . Then, for all a ∈ L with 0 < a < 1, there exists a function
φa : Z ∪ {+∞} → L such that φa ◦ υP is an L-subring of valuation of F with
divisor element a.

Reciprocally, let ν be an L-subring of valuation of the function field F/K with
divisor element a. Then, there exists a function φ : Z∪{+∞} → L such that φ◦υP
is an L-subring of valuation of F and φ ◦ υP ⊆ ν where P is the place associated
with νa.
Proof. We will prove the first part of the theorem. Let a ∈ L be such that
0 < a < 1. Then, we build a function φa : Z ∪ {+∞} → L with the following
properties:

(a) For all m,n ∈ Z ∪ {+∞}, the relation m ≤ n implies that φa(m) ≤ φa(n);

(b) φa(m+ n) ≥ φa(m) ∧ φa(n) for all m,n ∈ Z ∪ {+∞};

(c) φa(0) = a;

(d) φa(1) > a;
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(e) for all n ∈ Z \ {0}, φa(n) > a if and only if φa(−n) < a.

Then, the properties (a) and (b) of φa establish that φ ◦ υP is an L-subring of
F ; while the properties (a), (c), (d) and (e) justify that φ ◦ υP is an L-subring of
valuation of F , according to the Definition 2.1.

Reciprocally, let t be a prime element of νa. For each n ∈ Z, n ≥ 1, we denote
by An to the set {ν(utk) | u is a unity of νa and k ≥ n}. Then, we define the
function φ : Z ∪ {+∞} → L as follows: φ(+∞) = ν(0), and for all n ∈ Z,

φ(n) :=



∧
x∈An

x if n ≥ 1

a if n = 0

ν(t−1) if n < 0

Note that, for all n ∈ Z with n ≥ 1, An ⊇ An+1, with which φ(n) ≤ φ(n+1). This
implies that φ(m+n) ≥ φ(m)∧φ(n) for all m,n ∈ Z with m,n ≥ 1. Consequently,
we have that φ satisfies the conditions (a)-(e) and, hence, φ ◦ υP is an L-subring
of valuation of F , where P is the place associated with νa. Finally, the fact that
φ ◦ υP ⊆ ν follows from the definition of φ.

Observation 2.1. In the reciprocal of Theorem 2.1, if the L-subring ν of valuation
of the function field F/K with divisor element a satisfies that ν(tn) ≤ ν(tn+1) and
ν(utn) ≥ ν(tn) for all u unit of νa and for all n positive integer, then the function
φ : Z∪{+∞} → L in the proof of the theorem is given by: φ(+∞) = ν(0) and for
each n ∈ Z

φ(n) :=


ν(tn) if n ≥ 1

a if n = 0

ν(t−1) if n < 0.

In particular, if ν(utn) = ν(tn) for all u unit of νa and for all n positive integer,
then φ ◦ υP = ν.

Proposition 2.3. Let ν be an L-subring of valuation of a function field F/K with
divisor element a, ψ an L-subring of F and b ∈ L such that 0 < b < 1. Then, ψ
is an L-subring of valuation of F with divisor element b such that ψb = νa if and
only if ψ satisfies the following properties

(i) b and ψ(z) are comparable for all z ∈ F ;
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(ii) for all z ∈ F , ψ(z) = b if and only if ν(z) = a;

(iii) for all z ∈ F , ψ(z) > a if and only if ν(z) > b.

Proof. Suppose that ψ is an L-subring of valuation of the function field F/K with
divisor element b such that ψb = νa. It is clear that the condition (i) is true. We
will prove (ii). Let z ∈ F . Then, ψ(z) = b if and only if b is a unit of ψb = νa, if
and only if ν(z) = a. Now (iii) is immediate from (ii).
Reciprocally, it is clear (ii) y (iii) imply that ψb = νa; while the properties (i)-(iv)
from the Definition 2.1 are obtained from the hypotheses.

Corollary 2.1. Let ν be an L-subring of valuation of a function field F/K with
divisor element a, ψ an L-subring of F such that ν ⊆ ψ, a and ψ(z) are comparable
for all z ∈ F and, for all z ∈ F , ψ(z) = a if and only if ν(z) = a. Then, ψ is an
L-subring of valuation of F with divisor element a.
Proof. Since ν ⊆ ψ, we have that νa ⊆ ψa with ψa a proper subring of F ; but, νa
is a maximal proper subring of F , then necessarily νa = ψa. Hence, it is enough to
prove (iii) of the Proposition 2.3 with b = a. Then, let z ∈ F . If ψ(z) > a, then
ν(z) ≥ a since z ∈ ψa = νa. For hypothesis, necessarily ν(z) > a. Reciprocally, if
ν(z) > a, then ψ(z) ≥ ν(z) > a. This completes the proof.

3. An Approximation Theorem

Proposition 3.1. Let ν be an L-subring of a function field F/K. For each x, y ∈
F , it is true that

ν(x+ y) ∧ ν(x) = ν(x) ∧ ν(y) = ν(x+ y) ∧ ν(y).

In particular, if {ν(x), ν(y), ν(x+ y)} is a chain in L with ν(x) ̸= ν(y), then

ν(x+ y) = ν(x) ∧ ν(y).

Proof. Since ν(x) ≥ ν(x) ∧ ν(y), ν(y) ≥ ν(x) ∧ ν(y) and ν(x + y) ≥ ν(x) ∧ ν(y),
by definition of the concept of minimum, we obtain

ν(x+ y) ∧ ν(x) ≥ ν(x) ∧ ν(y) and ν(x+ y) ∧ ν(y) ≥ ν(x) ∧ ν(y).

On the other hand, as ν(x) = ν((x + y) − y) ≥ ν(x + y) ∧ ν(y), we have that
ν(x) ∧ ν(y) ≥ (ν(x + y) ∧ ν(y)) ∧ ν(y) = ν(x + y) ∧ ν(y); similarly, ν(x) ∧ ν(y) ≥
ν(x+ y) ∧ ν(x). Hence,

ν(x+ y) ∧ ν(x) = ν(x) ∧ ν(y) = ν(x+ y) ∧ ν(y).
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In particular, if ν(x) < ν(y), as ν(x + y) ≥ ν(x) ∧ ν(y) = ν(x) it holds that
ν(x) = ν(x+y)∧ν(x) = ν(x+y)∧ν(y) = ν(x+y), because ν(x+y)∧ν(y) ̸= ν(y).

Corollary 3.1. Let ν be an L-subring of the function field F/K, u a unit of νa
and z ∈ F nonzero such that ν(z) ̸= a and {ν(z), ν(z + u)} is a chain in L. Then
ν(z + u) = ν(z) ∧ a.
Proof. It follows immediately from the Proposition 3.1.

Definition 3.1. Two L-subrings of valuation ν1 and ν2 of a function field F/K,
with divisor elements a1 and a2 respectively, are L-equivalent if νa1 = νa2 .

Theorem 3.1. (Approximation Theorem for L-Subrings of Valuation)
Let ν1, . . . , νn be L-subrings of valuation of a function field F/K, n ≥ 2, with
divisor elements a1, . . . , an respectively, which satisfy the following properties: For
all i, j = 1, . . . , n,

(i) νi and νj are not L-equivalent if i ̸= j;

(ii) νi(F ) is a chain in L;

(iii) if z1, z2 ∈ F are such that νi(z1) ≥ νi(z2), then νi(z1z) ≥ νi(z2z) for each
z ∈ F ;

(iv) if z1, z2 ∈ F with νi(z1) > ai and νi(z2) > ai, then there exists m ∈ N such
that νi(z

m
1 ) > νi(z2);

(v) if z1, z2 ∈ F are nonzero such that νi(z1) < ai and νi(z2) < ai, with νi(z
−1
1 ) ̸=

νi(z
−1
2 ), then νi(z1 + z2) < ai.

Then, for each x1, . . . , xn ∈ F and for each ri ∈ νi(F ), with ri ̸= νi(0) and i =
1, . . . , n, there exists x ∈ F such that

νi(x− xi) = ri, for each i = 1, . . . , n.

Proof. We will prove the theorem through several steps.

Affirmation I: There exists u ∈ F such that ν1(u) > a1 and νi(u) < ai for all
i = 2, . . . , n.

We will proceed by induction on n. For n = 2, we have that νa1 ⊈ νa2 and

νa2 ⊈ νa1 . Let y1 and y2 be elements of F nonzero such that ν1(y1) ≥ a1, ν2(y
−1
1 ) >

a2, ν2(y2) ≥ a2 and ν1(y
−1
2 ) > a1. Let u := y1y

−1
2 . Then, we have that ν1(u) > a1

and ν2(u
−1) > a2, that is, ν1(u) > a1 and ν2(u) < a2. Hence, we assume that the

statement holds for n. There exists y ∈ F such that ν1(y) > a1 and νi(y) < ai for
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all i = 2, . . . , n. If νn+1(y) < an+1 then we would have finished, whence we assume
that νn+1(y) ≥ an+1. Let z ∈ F be such that ν1(z) > a1 and νn+1(z) < an+1.
Observe that if νi(z) < ai for all i = 2, . . . , n, then again the proof would be
finished. Hence, changing the numbering if necessary, we can assume that there
exists 2 ≤ k < n + 1 such that νi(z) ≥ ai for all 2 ≤ i ≤ k, and νj(z) < aj for all
k < j ≤ n + 1. By hypothesis, for all i = k + 1, . . . , n, there exists li a positive
integer such that νi(z

−li) > νi(y
−1). Taking l = max{li | k + 1 ≤ i ≤ n}, we have

that νi(z
−l) > νi(y

−1) for all i = k + 1, . . . , n. By (v), we have that νi(y + zl) < ai
for all i = k + 1, . . . , n. Since ν1(z

l) ≥ ν1(z) > a1, νi(z
l) ≥ ν1(z) ≥ ai for all

i = 2, . . . , k, and νn+1(z
−l) ≥ νn+1(z

−1) > an+1, we obtain that ν1(y+ zl) > a1 and
νi(y + zl) < ai for all i = 2, . . . , n+ 1. So, it is enough to choose u = y + zl. This
complete the inductive process.

Affirmation II: There exists w ∈ F such that ν1(w − 1) > r1 and νi(w) > ri for
all i = 2, . . . , n.

Firstly, we note that the hypothesis (iii) implies that νi(zv) = νi(z) for each
z ∈ F and for all v unit in (νi)ai , for i = 1, . . . , n. By Affirmation I, let u ∈ F be
such that ν1(u) > a1 and νi(u

−1) > ai for all i = 2, . . . , n. Then, by hypothesis
(iv), there exist m1, . . . ,mn ∈ N such that ν1(u

m1) > a1 ∨ r1 and νi(u−mi) > ai ∨ ri
for all i = 2, . . . , n. Let m = m1 · · ·mn, then ν1(u

m) ≥ ν1(u
m1) > a1 ∨ r1 and

νi(u
−m) ≥ νi(u

−mi) > ai ∨ ri for all i = 2, . . . , n. We write w = 1/(1 + um). Then,
ν1(w− 1) = ν1(−um/(1+um)) = ν1(u

m) > r1, since −1/(1+um) is a unit in (ν1)a1
and, on the other hand, by (iii)

νi(w) = νi

(
1

1 + um

)
= νi

(
1

um
− 1

um(1 + um)

)
≥ νi

(
1

um

)
> ri,

where νi(w) = νi(1/1 + um)) > ai = νi(1).

Affirmation III: For each y1, . . . , yn ∈ F , there exists z ∈ F such that νi(z−yi) >
ri, for all i = 1, . . . , n.

We have that if yi = 0 for all i = 1, . . . , n, then it is enough to choose z = 0, so
we will assume that not all elements yi, i ∈ {1, . . . , n}, are zero.

By Affirmation II, para cada i = 1, . . . , n, we choose wi ∈ F such that

νi(wi − 1) >


ri if yi = 0

νi

(
zi
yi

)
if yi ̸= 0

and νj(wi) >


rj if yj = 0

νj

(
zj
yj

)
if yj ̸= 0 ,

where zj is an element in F such that νj(zj) > rj, by (iv), for all j = 1, . . . , n.
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Then, defining z :=
n∑

l=1

ylwl, we have, by applying hypothesis (iii) where nec-

essary, that νi(z − yi) > ri for each i = 1, . . . , n.
Finally, let us conclude the proof of the theorem. By Affirmation III, we take

elements z, z1, . . . , zn in F such that νi(z − xi) > ri and νi(zi) = ri for all i =
1, . . . , n; furthermore, we choose an element z′ ∈ F so that νi(z

′ − zi) > ri for each
i = 1, . . . , n, by Affirmation III. Thus,

νi(z
′) = νi((z

′ − zi) + zi) = νi(z
′ − zi) ∧ νi(zi) = νi(zi) = ri,

for all i = 1, . . . , n. We define x := z + z′. Then

νi(x− xi) = νi((z − xi) + z′) = νi(z − xi) ∧ νi(z′) = νi(z
′) = ri,

for all i = 1, . . . , n. This complete the proof.

4. Valuations of function fields onto a lattice

Definition 4.1. Let F/K be a function field, L a lattice and µ an L-subset of F .
We say that µ is an L-valuation of the function field F/K if µ satisfies the
following properties:

(i) For each x ∈ F , x ̸= 0, 0 < µ(x) < µ(0) ≤ 1;

(ii) there exists a ∈ L, with 0 < a < µ(0), such that µ(x) ≥ a or µ(x−1) ≥ a, for
each x ∈ F nonzero;

(iii) µ(x+ y) ≥ µ(x) ∧ µ(y), for all x, y ∈ F ;

(iv) for all x, y ∈ F ,

(a) µ(xy) ≥ µ(x) ∨ µ(y) if µ(x) ≥ a and µ(y) ≥ a

(b) µ(x) < µ(xy) < µ(y) if µ(x) < a and µ(y) > a

(c) µ(xy) ≤ µ(x) ∧ µ(y) if µ(x) ≤ a and µ(y) ≤ a;

(v) µ(x) = a for all x ∈ K, with x ̸= 0;

(vi) there exists z ∈ F nonzero so that µ(z) > a.

We will call the element a of L again divisor element of µ.

Proposition 4.1. Under the conditions of the Definition 4.1, for all nonzero
x, y, z ∈ F ,
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(i) µ(x) ≥ a and µ(x−1) ≥ a implies that µ(x) = µ(x−1) = a;

(ii) µ(x) > a if and only if µ(x−1) < a;

(iii) µ(x) = a if and only if µ(x−1) = a;

(iv) if µ(x) = a = µ(y), then µ(xy) = a;

(v) µ(x) = a if and only if µ(xy) = µ(y). In particular, µ(−y) = µ(y);

(vi) µ(x/y) = a if and only if µ(x) = µ(y);

(vii) µ(x/y) > a if and only if µ(y) < µ(x);

(viii) µ(x/y) < a if and only if µ(x) < µ(y);

(ix) µ(x) > µ(y) if and only if µ(xz) > µ(yz);

(x) the image µ(F ) is a chain in the lattice L;

(xi) µ(x) < µ(y) if and only if µ(y−1) < µ(x−1);

(xii) The set µa = {w ∈ F | µ(w) ≥ a} is a subring of valuation of F/K;

(xiii) x is a unity of µa if and only if µ(x) = a;

(xiv) if µ(x) > a (respectively µ(x) < a; µ(x) = a), then µ(xn) < µ(xn+1) (respec-
tively µ(xn) > µ(xn+1); µ(xn) = a), for all n ≥ 1. In particular, the image
µ(F ) of µ is an infinite set.

(xv) If K̃ is the constant field of the function field F/K, then µ(x) = a, when
x ∈ K̃ (x ̸= 0).

Proof. (i): We have that a = µ(1) = µ(xx−1) ≥ µ(x)∨µ(x−1) ≥ µ(x), µ(x−1) ≥ a,
that is, µ(x) = µ(x−1) = a.

(ii): By (i), if µ(x) > a, then it cannot happen that µ(x−1) ≥ a, for which
µ(x−1) < a.

(iii): It follows from (ii).

(iv): If µ(x) = a = µ(y), then µ(xy) ≥ µ(x)∨µ(y) = a and µ(xy) ≤ µ(x)∧µ(y) = a,
for which µ(xy) = a.

(v): We assume that µ(x) = a. If µ(y) > a, we will have that µ(xy) ≥ µ(x)∨µ(y) =
µ(y) > a and, on the other hand, µ(y) = µ(x−1(xy)) ≥ µ(x−1) ∨ µ(xy) = µ(xy),
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because µ(x−1) = a and µ(xy) > a. Hence, µ(xy) = µ(y). Similarly, equality is
proven in the case that µ(y) < a. Of course, if µ(y) = a, then the affirmation
follows from (iv).
Reciprocally, we assume that µ(xy) = µ(y). If µ(x) > a, then it holds that
µ(y) ≥ a or µ(y) < a. In the first case, we have that µ(y) = µ(xy) ≥ µ(x) ∨ µ(y),
that is, µ(y) = µ(x) ∨ µ(y), for which a < µ(x) ≤ µ(y); thus, µ(xy) = µ(y) =
µ(x−1(xy)) < µ(xy), but this is absurd. In the second case, we will have the
inequality µ(y) < µ(xy) < µ(x), the which also is absurd. However, if µ(x) < a,
similarly, it may happen that µ(y) > a or µ(y) ≤ a. In the first case, it will
have the inequality µ(x) < µ(xy) < µ(y), the which is absurd. If µ(y) ≤ a, we
will have that µ(y) = µ(xy) ≤ µ(x) ∧ µ(y), for which µ(y) ≤ µ(x) < a; thus,
µ(xy) < µ(x−1(xy)) = µ(y) = µ(xy), since µ(x−1) > a and µ(xy) < a, but this is
absurd. Therefore, necessarily, µ(x) = a.

(vi): If µ(x/y) = a, we have that µ(x) = µ((x/y)y) = µ(y). Reciprocally, if
µ(x) = µ(y), we have that µ(y) = µ(x) = µ((x/y)y), this implies that µ(x/y) = a.

(vii): We assume that µ(x/y) > a. By (vi), we obtain that µ(x) ̸= µ(y). We have
the following cases:

Case µ(x) < a: it cannot happen that µ(y) ≥ a. In fact, if µ(y) > a, then
µ(x/y) ≤ µ(x) ∧ µ(y−1) ≤ a, the which is absurd. If µ(y) = a, then µ(y−1) = a
and µ(x/y) = µ(x) < a, the which also is absurd. Thus, necessarily, µ(y) < a and,
with this, µ(y) < µ((x/y)y) < µ(x/y), that is, µ(y) < µ(x).

Case µ(x) = a: Here, it cannot happen that µ(y) ≥ a. Since, if µ(y) > a, we
will have that a = µ(x) = µ((x/y)y) ≥ µ(x/y) ∨ µ(y) ≥ µ(y) > a, the which is
absurd. If µ(y) = a, it will have that µ(x/y) = µ(x) = a, neither can it be. Thus,
necessarily, µ(y) < a, that is, µ(y) < a = µ(x).

Case µ(x) > a: Regardless of the value that µ(y) takes, we will see that µ(y) <
µ(x). If µ(y) > a, then µ(x) = µ((x/y)y) ≥ µ(x/y) ∨ µ(y) ≥ µ(y), with µ(x) ̸=
µ(y), that is, µ(y) < µ(x). If µ(y) = a, then µ(y) = a < µ(x/y) = µ(x). Finally, if
µ(y) < a, then µ(y) < a < µ(x).

In summary, if µ(x/y) > a, then µ(y) < µ(x). Reciprocally, we assume that
µ(y) < µ(x). If we had to µ(x/y) < a, then µ(y/x) > a and, on the other hand, we
must have that µ(x) < µ(y), but this is absurd. If µ(x/y) = a, then µ(x) = µ(y),
the which cannot happen either. Necessarily, µ(x/y) > a.

(viii): It is an immediate consequence of (vi) and (vii).

(ix): µ(x) > µ(y) ⇔ µ

(
xz

yz

)
= µ

(
x

y

)
> a⇔ µ(xz) > µ(yz).
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(x): It is immediate.

(xi): µ(x) < µ(y) ⇔ µ
(y
x

)
> a⇔ µ

(
y−1

x−1

)
< a ⇔ µ(y−1) < µ(x−1).

(xii): It is immediate.

(xiii): It is immediate of (i) and (iii).

(xiv): Assume that µ(x) > a, then µ(xn+1/xn) = µ(x) > a for all n ∈ N, that
is, µ(xn+1) > µ(xn) for all n ∈ N. Similarly, we obtain the results for the cases
µ(x) = a or µ(x) < a when applying (vi) and (viii) respectively.

(xv): Suppose that x ∈ K̃ (x ̸= 0). We assume that µ(x) > a. We take f(x) =
irr(x,K) = amX

m + am−1X
m−1 + · · · + a1X + a0, with am = 1 and a0 ̸= 0.

Then, amx
m + am−1x

m−1 + · · ·+ a1x+ a0 = 0, where µ(aix
i) = µ(xi) > µ(xi−1) =

µ(ai−1x
i−1) for each i = 1, . . . ,m. Hence, µ(0) = µ(amx

m+am−1x
m−1+ · · ·+a1x+

a0) = µ(amx
m) ∧ · · · ∧ µ(a0) = µ(a0) < µ(0), but this is absurd. Similarly, we can

prove that the relationship µ(x) < a give a contradiction. Therefore, necessarily,
µ(x) = a.

Corollary 4.1. Let µ be an L-valuation of a function field F/K with divisor
element a. Then, there exists an injective homomorphism of lattices ψ : Z −→ L
such that 0 < ψ(m) < 1 for each m ∈ Z.
Proof. Since µa is a subring of valuation of F , let t ∈ µa be a prime element of
the place P associated with µa. Then, each element x ∈ F nonzero is uniquely
expressed as x = utn for some u unit of µa and for some n ∈ Z, where µ(x) = µ(tn).
Thus, an injective homomorphism of lattices ψ : Z −→ L required is given by
ψ(n) := µ(tn) for all n ∈ Z.

Proposition 4.2. Let F/K be a function field, L a lattice, µ an L-valuation of
F/K with divisor element a and x, y, x1, . . . , xn ∈ F .

(i) If µ(xi) ̸= µ(xj) for all i ̸= j, then µ(x1 + · · ·+ xn) = µ(x1) ∧ · · · ∧ µ(xn);

(ii) if x1 + · · ·+ xn = 0, then there exist i ̸= j such that µ(xi) = µ(xj);

(iii) if µ(x) < µ(y) ≤ a, then µ(x+ y) < a.

Proof. (i): By induction on n. If n = 1, then the affirmation is clear. We
will prove it to n = 2. We can assume that µ(x1) < µ(x2). Then, µ(x1) =
µ((x1 + x2)− x2) ≥ µ(x1 + x2)∧ µ(x2) = µ(x1 + x2) ≥ µ(x1)∧ µ(x2) = µ(x1), that
is, µ(x1 + x2) = µ(x1) = µ(x1)∧ µ(x2). Now, we assume the affirmation hold to n,
and we will prove it for n+1. We note that µ(x1)∧· · ·∧µ(xn) ̸= µ(xn+1), with which
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it has that µ(x1+· · ·+xn+1) = µ((x1+· · ·+xn)+xn+1) = µ(x1+· · ·+xn)∧µ(xn+1) =
(µ(x1) ∧ · · · ∧ µ(xn)) ∧ µ(xn+1) = µ(x1) ∧ · · · ∧ µ(xn+1). This complete the proof.

(ii): It follows immediately from (i).

(iii) It is immediate.
Let µ and µ1 be L-valuations of the function field F/K with a and a1 divisor

elements, respectively. Again, we say that µ and µ1 are equivalent if µa = (µ1)a1 .
On the other hand, we say that µ satisfies the Archimedean property if for each
x, y ∈ F , with µ(x) > a and µ(y) > a, there exists m ∈ N so that µ(xm) > µ(y).

Theorem 4.1. Let L and L1 be two lattices, µ an L-valuation and µ1 a L1-
valuation both of a function field F/K with divisor elements a and b respectively.
Then, µa = (µ1)b if and only if there exists an isomorphism of lattices ψ : µ(F ) −→
µ1(F ) such that maps a onto b and ψ ◦ µ = µ1.
Proof. We note that µ(F ) and µ1(F ) are sublattices of L and L1 respectively.
Assume that µa = (µ1)b, that is, it is true that, for each x ∈ F , µ(x) ≥ a if and
only if µ1(x) ≥ b; in particular, µ(x) = a if and only if µ1(x) = b, because x will be
a unity of µa = (µ1)b; in consequence, µ(x) > a if and only if µ1(x) > b. With this
information, for each x, y ∈ F nonzero, we have that the following equivalences
are true: µ(x) < µ(y) if and only if µ1(x) < µ1(y) and µ(x) = µ(y) if and only if
µ1(x) = µ1(y). We define ψ : µ(F ) −→ µ1(F ) given by

ψ(µ(x)) := µ1(x),

for all x ∈ F . ψ is a homomorphism of lattices, since for all x, y ∈ F , with
µ(x) ≤ µ(y), we have that µ1(x) ≤ µ1(x) and

ψ(µ(x) ∨ µ(y)) = ψ(µ(y)) = µ1(y) = µ1(x) ∨ µ1(y) = ψ(µ(x)) ∨ ψ(µ(y)), and

ψ(µ(x) ∧ µ(y)) = ψ(µ(x)) = µ1(x) = µ1(x) ∧ µ1(y) = ψ(µ(x)) ∧ ψ(µ(y)).
Furthermore, ψ is injective because, for each x, y ∈ F , if ψ(µ(x)) = ψ(µ(y)), that
is µ1(x) = µ1(y), then there exists u a unity of µa = (µ1)b such that x = uy,
with which µ(x) = µ(uy) = µ(y). As it clear that ψ is surjective, we have that
ψ : µ(F ) −→ µ1(F ) is an isomorphism of lattices, and ψ(a) = ψ(µ(1)) = µ1(1) = b.
Reciprocally, we suppose that there exists an isomorphism of lattices ψ : µ(F ) −→
µ1(F ) such that maps a onto b and ψ ◦µ = µ1. Then, for all x ∈ F , it is clear that
µ(x) ≥ a if and only if ψ(µ(x)) ≥ ψ(a), that is µ1(x) ≥ b. Therefore, µa = (µ1)b.

Under an analogous procedure of the proof of the Theorem 3.1, we have the
following theorem of approach for L-valuations, knowing that it holds (ix) of the
Proposition 4.1, and (iii) of the Proposition 4.2.
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Theorem 4.2. (Approximation Theorem for L-valuations) Let µ1, . . . , µn be
L-valuations not equivalent to each other of a function field F/K, with n ≥ 2, and
divisor elements a1, . . . , an respectively, which satisfy the Archimedean property.
Then, for each x1, . . . , xn ∈ F and for each ri ∈ µi(F ), with ri ̸= νi(0) and
i = 1, . . . , n, there exists x ∈ F such that

µi(x− xi) = ri, for each i = 1, . . . , n.

5. Examples

1. Let −∞ and +∞ be two different objects that do not belong to the set Z of
the integer numbers, satisfying that −∞ < n < +∞ for all integer number n.
Then, L := Z∪ {−∞,+∞} is a complete Heyting algebra. On the other hand, let
F = K(x) be the rational function field over the fieldK in the indeterminateX, and
f(X) an irreducible polynomial ofK[X]. Then, the valuation of F associated to the
maximal ideal P of K[X] generated by f(X), denoted for υP , is given by υP (0) =

+∞ and υP (α(X)) = n if α(X) ̸= 0, α(X) = f(X)n
g(X)

h(X)
for unique polynomials

except associates g(X), h(X) ∈ K[X] relatively prime, and for a unique n ∈ Z.
Then, φ ◦ υP is an L-subring of valuation of F with divisor element a = 0, where
φ : Z ∪ {+∞} → L is given by: φ(+∞) = +∞ y for each n ∈ Z

φ(n) :=


n if n ≥ 0

−1 if n < 0.

Note that υP is an L-valuation of the rational funtion field F with divisor element
a = 0.

2. The interval L := [0, 1] is a complete Heyting algebra. Again, we consider
the rational function field F = K(X), f(X) an irreducible polynomial of K[X],

where each element α(X) ∈ F is expressed in the form α(X) = f(X)n
g(X)

h(X)
for

unique polynomials except associates g(X), h(X) ∈ K[X] relatively prime, and for
a unique n ∈ Z. Then, the function νP : F −→ L given by

νP (α(X)) :=



1 if α(X) = 0

1− 1

n+ 2
if n ≥ 0

1

4
if n < 0
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is an L-subring of valuation of the function field F . While the function µP : F −→
L given by

µP (α(X)) :=



1 if α(X) = 0

1− 1

n+ 2
if n ≥ 0

− 1

n− 2
if n < 0

is an L−valuation of the function field F .
In both cases, its divisor element is a = 1/2.
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